

F

Wednesday 12 June 2019 – Morning

GCSE (9–1) Combined Science (Chemistry) A (Gateway Science)

J250/04 Paper 4 (Foundation Tier)

Time allowed: 1 hour 10 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet (for GCSE Combined Science (Chemistry) A (inserted))

You may use:

- · a scientific or graphical calculator
- an HB pencil

Please write clearly in black ink. Do not write in the barcodes.								
Centre number						Candidate number		
First name(s)								
Last name								

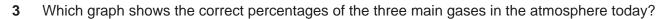
INSTRUCTIONS

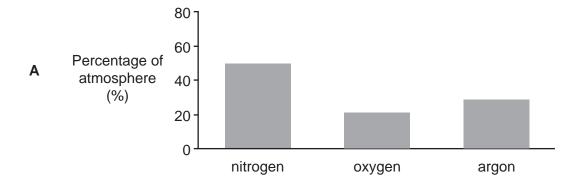
- The Data Sheet will be found inside this document.
- Use black ink. You may use an HB pencil for graphs and diagrams.
- Answer all the questions.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. If additional space is required, use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.

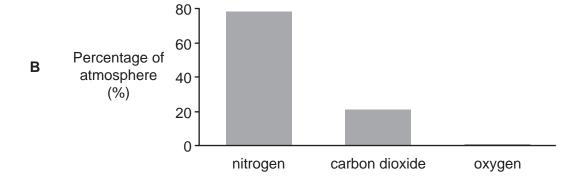
INFORMATION

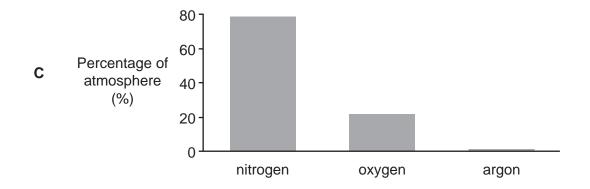
- The total mark for this paper is 60.
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- This document consists of 24 pages.

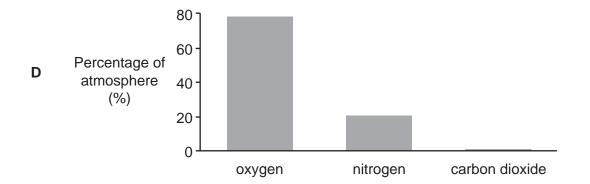
2


SECTION A


You should spend a maximum of 20 minutes on this section.


Answer **all** the questions.


Write your answer to each question in the box provided.

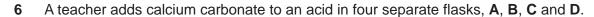

1	How does a catalyst speed up a reaction?			
	Α	It decreases the activation energy.		
	В	It decreases the energy of the reactant particles.		
	С	It increases the activation energy.		
	D	It increases the energy of the reactant particles.		
	You	ur answer	[1]	
2	Wh	ich process leads to the greenhouse effect?		
	Α	Radiation absorbed by carbon dioxide		
	В	Radiation causing plants to grow		
	С	Radiation causing pollution		
	D	Radiation damaging the ozone layer		
	You	ur answer	[1]	

Your answer [1]

4	This is	part of the	reactivity	series.
---	---------	-------------	------------	---------

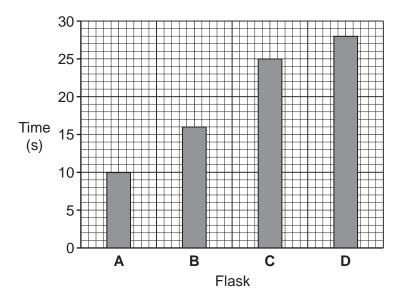
Tin 4	more reactive
Lead	
Copper	
Silver	less reactive

Which statement is correct?


- A Copper can displace tin from tin chloride.
- **B** Lead can displace copper from copper chloride.
- **C** Lead can displace tin from tin chloride.
- **D** Silver can displace copper from copper chloride.

Your answer		[1]
-------------	--	-----

5 Which row of the table describes Group 1 and Group 7 elements?


	Group 1 elements	Group 7 elements
Α	metals with low melting points	metals with high melting points
В	metals with low melting points	non-metals with low melting points
С	non-metals with high melting points	non-metals with low melting points
D	non-metals with low melting points	metals with high melting points

Your answer [1	Your answer		[1]
----------------	-------------	--	-----

He measures the time it takes for the same volume of carbon dioxide to be produced in each flask.

This is a graph of his results.

Which flask has the fastest rate of reaction?

Your answer	[1]
-------------	-----

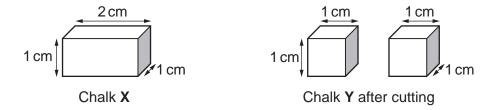
7 Aluminium is extracted from aluminium oxide using electrolysis.

Carbon cannot be used to do this.

Why is electrolysis used?

- A Aluminium is more reactive than carbon.
- **B** Aluminium oxide dissolves in water.
- **C** Aluminium oxide has a high melting point.
- **D** Electrolysis uses less energy than extraction with carbon.

Your answer [1]


6

8	Son	ne metals react faster with an acid than others.	
	Whi	ch statement explains why?	
	Α	The acid gives off hydrogen atoms more easily.	
	В	The acid gives off hydrogen gas more easily.	
	С	The metal forms a negative ion more easily.	
	D	The metal forms a positive ion more easily.	
	You	r answer	[1]
9	The	elements neon and argon in Group 0 are unreactive.	
	Whi	ch statement explains why?	
	Α	These elements have 8 electrons in the nucleus.	
	В	These elements have 8 electrons in the outer shell.	
	С	These elements have 8 protons in the nucleus.	
	D	These elements have 8 protons in the outer shell.	
	You	r answer	[1]

10 Two pieces of chalk, **X** and **Y**, both have the same volume.

A student cuts ${\bf Y}$ into two pieces.

The student reacts **X** and both pieces of **Y** with separate samples of an acid.

The two pieces of chalk Y react faster than chalk X.

Which row on the table shows the surface area of **X** and **Y**?

	Surface area of X	Total surface area of the two pieces of Y
Α	10 cm ²	10 cm ²
В	10 cm ²	12 cm ²
С	10 cm ²	20 cm ²
D	12 cm ²	10 cm ²

Your answer [1]

8 SECTION B

Answer all the questions.

11	This que	estion is about Group 1 and Group 7 elements.	
	(a) A G	Group 1 element D reacts with water.	
	Thi	s is the equation:	
	2 D	+ $2H_2O \rightarrow 2NaOH + E$	
	(i)	Name element D .	
			[1]
	(ii)	A teacher shows this reaction to his class.	
		Describe one safety precaution he should use.	
			[1]
	(iii)	E is a colourless gas.	
		How can you show if the gas is hydrogen or oxygen?	
		Describe the tests for hydrogen and oxygen, and the results you would expect gas ${\bf E}.$	with
		test for hydrogen	
		result with gas E	
		test for oxygen	
		result with gas E	[2]
	(iv)	Group 1 elements are very reactive.	
		Write down the reason why.	

(b) Table 11.1 shows the densities of the first four Group 1 elements at room temperature.

Element	Density (g/cm ³)
Lithium	0.534
Sodium	0.968
Potassium	0.855
Rubidium	1.532

Table 11.1

(i)	Calculate how many times larger the density of rubidium is than the density of lithium .
	Give your answer to 1 significant figure.

(ii) 1 g of sodium and 1 g of potassium are mixed to form an alloy.

Calculate the density of the alloy.

(iii) The element caesium (Cs) is also in Group 1. Caesium is found below rubidium in the Periodic Table.

Use the information in **Table 11.1** and your knowledge of trends in properties for Group 1 elements to estimate the density of caesium.

(c)	A st	student reacts a solution of KBr with chlorine, Cl_2 .				
	(i)	Balance the equation for this reaction.				
		KBr + C l_2 \rightarrow KC l + Br $_2$				
	(ii)	What is the name of the chemical KBr?				
		Tick (✓) one box.				
		Bromine				
		Potassium				
		Potassium bromide				
		Potassium bromine	[1]			
	(iii) What does the reaction tell you about the reactivity of Br_2 and $\mathrm{C}l_2$?					
		Explain your answer.				
			[2]			

11 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

12	The reaction	hetween	sulfur	dioxide	and	oxyden	is	reversible
14	THE TEACHOR	DerMeeli	Sullul	UIUXIU C	anu	OXYGEII	13	IEAELSIDIE

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

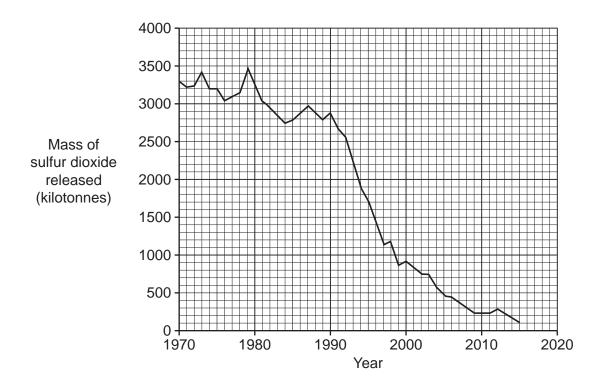
(a) In a closed system the reaction between sulfur dioxide and oxygen reaches a dynamic equilibrium.

Use a symbol from the list to complete the sentence.

$$> < = \frac{1}{2}$$

At equilibrium, the rate of the forward reaction is the rate of the reverse reaction.				
Wha	at is meant by the term reversible reaction?			
		[1]		
(i)	Name one source of sulfur dioxide in the atmosphere.			
		[1]		
(ii)	Describe two problems caused by the release of sulfur dioxide into the atmosphere.			
	1			
	2			
		[2]		
	Wha	What is meant by the term reversible reaction? (i) Name one source of sulfur dioxide in the atmosphere. (ii) Describe two problems caused by the release of sulfur dioxide into the atmosphere. 1		

(d) The table shows some relative atomic masses.


Element	Relative atomic mass
Sulfur	32.1
Oxygen	16.0

Calculate the percentage, by mass, of oxygen in SO_2 .

Give your answer to 1 decimal place.

(e) The amount of sulfur dioxide released in the UK is decreasing.

This graph shows how it has decreased since 1970.

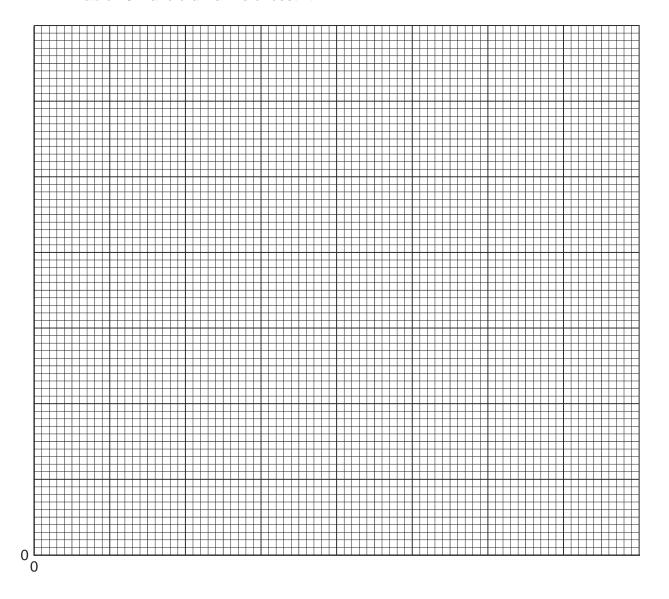
How much did the sulfur dioxide decrease between 1975 and 2015?

[1]

13 One homologous series of organic compounds is called the alkanes.

They have the general formula C_nH_{2n+2} .

(a) The alkane with one carbon atom, n = 1, is called methane.


Write down the formula of methane.

(b) Table 13.1 shows the energy released when some alkanes burn in oxygen.

Alkane	Number of C atoms	Energy released (kJ/mol)
C ₃ H ₈	3	2220
C ₄ H ₁₀	4	2877
C ₅ H ₁₂	5	3510
C ₆ H ₁₄	6	4163
C ₇ H ₁₆	7	4816
C ₈ H ₁₈	8	5470

Table 13.1

(i) Plot a graph of number of carbon atoms against energy released using the data in **Table 13.1** and draw a line of best fit.

[4]

(ii) Use the graph to predict the energy released when methane burns (1 carbon atom).

Energy released =kJ/mol [1]

		16		
(c)	Hex	ane is a liquid alkane that burns in oxygen.		
	hexane + oxygen → carbon dioxide + water			
	(i)	Which element in hexane is oxidised to produce water?		
		Give a reason for your answer.		
		element		
		reason[1]		
	(ii)	A student burns 10.0 g of hexane.		
		Hexane Evaporating dish Heatproof mat		
		These are his results.		
		Mass of hexane before burning = 10.0 g Mass of hexane after burning = 0.0 g		
		The law of conservation of mass is true for this reaction.		
		Explain why.		

.....

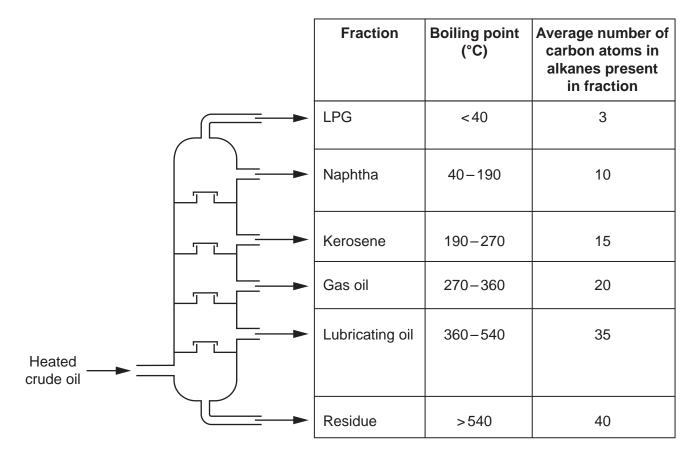
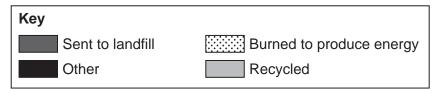
.....[2]

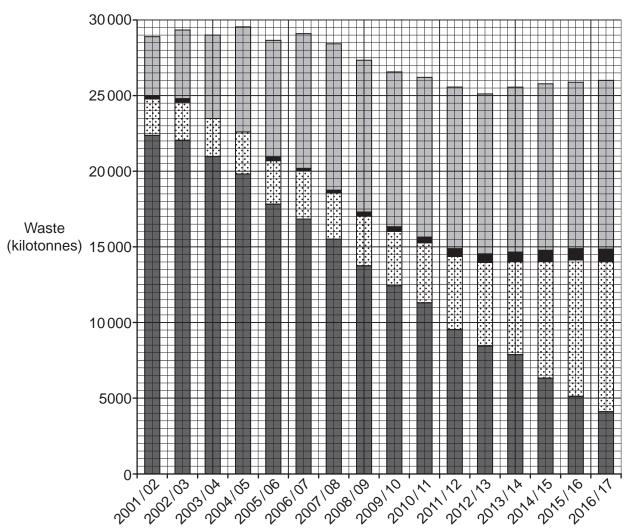
17 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

14* Fractional distillation can be used to separate different fractions from crude oil.

Fig. 14.1 gives some information about the process.


Fig. 14.1

Explain how fractional distillation produces the different fractions from crude oil.
Use the information in Fig. 14.1 and include ideas about intermolecular forces in your answer.
TC

15 Local councils collect waste from households.

The graph shows what happened to the waste between 2001 and 2017.

(a) Describe and explain one trend shown by the graph.						

(b)	State one disadvantage of recycling.
	[1]

16	A st	uder	nt adds some magnesium to dilute hydrochloric acid (HC1).	
	Ма	ium chloride (MgC l_2) and hydrogen gas is formed.		
	(a)	Wri	te a balanced symbol equation for this reaction.	
				[2
	(b)		wants to investigate how changing the concentration of hydrochloric acid affects the reaction.	ate
		The	student uses:	
		•	hydrochloric acid with a concentration of 1 mol/dm ³	
		•	magnesium ribbon	
		•	a conical flask	
		•	a measuring cylinder	
		•	a mass balance	
		•	a stopwatch.	
		(i)	Identify the independent variable in the investigation.	
				[1]
		(ii)	Identify two control variables in the investigation.	
			1	
			2	
				[2

(c) The student measures the time it takes from adding the magnesium to the hydrochloric acid until the reaction mixture stops bubbling.

The table shows the student's results.

Concentration of acid (mol/dm³)	Time 1 (s)	Time 2 (s)	Time 3 (s)	Mean (average) time (s)
1.00	15	15	15	15
0.75	65	55	41	54
0.50	85	90	88	88
0.25	300	290	295	295

The res	sults at 0.75 n	nol/dm ³	are repeated.				
This is	a graph of the	student	's results.				
	250						
īme (s)	150						
	50					*	
	0.0	0.2	0.4 Concentratio	0.6 n of acid	0.8 (mol/dm ³)	1.0	1.2
			ke from these re				

END OF QUESTION PAPER

24 ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.